Differential Geometry

Homework 4

Mandatory Exercise 1. (10 points)
Recall that an action of a group G on a manifold M is called proper if the action map $G \times M \rightarrow$ $M \times M$ is proper, i.e. the preimage of any compact set is compact.
(a) Show that if G is compact then the action is proper.
(b) How about if M is compact and G is not? Can you have a proper action of \mathbb{R} on $S^{1} \times S^{1}$?

Mandatory Exercise 2. (10 points)
(a) Give examples of matrices $A, B \in \mathfrak{g l}(2)$ such that $e^{A+B} \neq e^{A} e^{B}$.

For $A \in \mathfrak{g l}(n)$, consider the differentiable map

$$
\begin{aligned}
h: \mathbb{R} & \longrightarrow \mathbb{R} \backslash\{0\} \\
t & \longmapsto \operatorname{det} e^{A t} .
\end{aligned}
$$

(b) This map is a group homomorphism between $(\mathbb{R},+)$ and $(\mathbb{R} \backslash\{0\}, \cdot)$.
(c) Show that $h^{\prime}(0)=\operatorname{tr} A$ and $\operatorname{det}\left(e^{A}\right)=e^{\operatorname{tr} A}$.

Suggested Exercise 1. (0 points)
Recall that the Lie algebra $\mathfrak{u}(2)$ of $U(2)$ consists of 2×2 skew-Hermitian matrices. For simplicity, we use multiplication by i to identify $\mathfrak{u}(2)$ with the set of 2×2 Hermitian matrices. The adjoint action of $U(2)$ is by conjugation:

$$
A \cdot \xi=A \xi A^{-1}, A \in U(n), \xi \in \mathfrak{u}(2)
$$

Fix any real numbers $\lambda_{1}, \lambda_{2} \in \mathbb{R}$, and let Λ denote the diagonal matrix $\operatorname{diag}\left(\lambda_{1}, \lambda_{2}\right)$.
(a) What is the orbit $U(2) \cdot \Lambda$ of Λ in $\mathfrak{u}(2)$?
(b) Does it depend on the choice of $\lambda_{1}, \lambda_{2} \in \mathbb{R}$?
(c) Now consider the same question for the adjoint action of $U(n)$.

Suggested Exercise 2. (0 points)
(a) Show that $(\mathbb{R},+)$ is a Lie group, determine its Lie algebra and write an expression for the exponential map.
(b) Prove that, if G is an abelian Lie group, then $[V, W]=0$ for all $V, W \in \mathfrak{g}$.
(c) Find the Lie algebra of S^{1} and compare it with the Lie algebra of $(\mathbb{R},+)$. Can you deduce existence of some special map between \mathbb{R} and S^{1} ? Now do the same with $T^{n}=S^{1} \times \ldots \times S^{1}$ (product of n circles) and $\left(\mathbb{R}^{n},+\right)$.

Suggested Exercise 3. (0 points)
Consider the special linear group $\mathrm{SL}(2)$ consisting of 2×2 matrices with determinant 1 . Show that $\mathrm{SL}(2)$ is a 3-manifold diffeomorphic to $S^{1} \times \mathbb{R}^{2}$.

Suggested Exercise 4. (0 points)
Let $M=S^{2} \times S^{2}$ and consider the diagonal S^{1}-action on M given by

$$
e^{i \theta} \cdot(u, v):=\left(e^{i \theta} \cdot u, e^{2 i \theta} \cdot v\right)
$$

where, for $u \in S^{2} \subset \mathbb{R}^{3}$ and $e^{i \beta} \in S^{1}, e^{i \beta} \cdot u$ denotes the rotation of u by an angle β around the z-axis.
(a) Determine the fixed points for this action.
(b) What are the possible non-trivial stabilizers?

Suggested Exercise 5. (0 points)
Let G be a Lie group and H a closed Lie subgroup, i.e. a subgroup of G which is also a closed submanifold of G. Show that the action of H in G defined by $A(h, g)=h \cdot g$ is free and proper.

